Một số kinh nghiệm về việc vận dụng các phương pháp phân tích đa thức thành nhân tử vào giải toán môn đại số 8

896

Phần thứ nhất: MỞ ĐẦU

I. Đặt vấn đề

Toán học là bộ môn rất quan trọng đóng vai trò chủ lực. Nó được vận dụng và phục vụ rộng rãi trong đời sống con người chúng ta. Toán học hình thành cho các em tính chính xác, hệ thống khoa học, logic và tư duy cao.
Trong chương trình đại số lớp 8, dạng bài về phân tích đa thức thành nhân tử là một nội dung hết sức quan trọng. Việc áp dụng dạng toán phân tích đa thức thành nhân tử vào giải toán rất phong phú và đa dạng. Vì vậy, để giúp học sinh giải quyết tốt dạng Toán này là yêu cầu hết sức cần thiết đối với người giáo viên.
Trong những năm thực tế giảng dạy môn đại số 8 tôi nhận thấy đa số học sinh khi học xong các bài phân tích đa thức thành nhân tử vào áp dụng giải toán còn gặp nhiều sai sót, nguyên nhân là do học sinh chưa nắm vững các phương pháp giải, chưa vận dụng các kĩ năng biến đổi một cách thành thạo, linh hoạt, sáng tạo vào từng bài toán cụ thể.
Chính vì vậy tôi đã chọn đề tài: “Một số kinh nghiệm về việc vận dụng các phương pháp phân tích đa thức thành nhân tử vào giải toán môn đại số 8” với mong muốn chia sẻ một số kinh nghiệm của mình để các giáo viên dạy Toán cùng trao đổi.

II. Mục đích nghiên cứu

Đề tài đưa ra nhằm giúp học sinh khắc phục được những sai sót của mình khi phân tích đa thức thành nhân tử trong các bài Toán. Bên cạnh đó, chỉ ra một số dạng Toán phân tích đa thức thành nhân tử để học sinh tổng quát được cách làm của mình cho phù hợp.
Đặc biệt, đề tài này còn giúp các em rèn kĩ năng giải các bài Toán phương trình tích và áp dụng phân tích đa thức thành nhân tử vào một số dạng Toán liên quan.
Hơn nữa, tôi nghiên cứu đề tài này để nâng cao trình độ chuyên môn của bản thân đồng thời cũng trao đổi cùng đồng nghiệp khi dạy các bài “phân tích đa thức thành nhân tử” để cung cấp thêm cho học sinh phương pháp học và làm Toán. Giúp các em nắm được kiến thức cơ bản, cách tư duy và phương pháp sử dụng linh hoạt các cách phân tích đa thức thành nhân tử, để các em ngày càng yêu thích và có hứng thú hơn đối với bộ môn Toán. Góp phần cải thiện chất lượng trong học tập của các em, giúp các em phát triển tư duy giải Toán một cách toàn diện.

Phần thứ 2: GIẢI QUYẾT VẤN ĐỀ

I. Cơ sở lí luận của vấn đề

Phân tích đa thức thành nhân tử là một bộ phận vô cùng quan trọng của phân môn Đại số 8 nhưng nó áp dụng xuyên suốt trong quá trình học cấp Trung học cơ sở. Vì vậy nếu các em không nắm được phương pháp nhớ và vận dụng thì việc giải Toán liên quan đến phân tích đa thức thành nhân tử sẽ gặp rất nhiều khó khăn.
Ví dụ một số bài Toán rút gọn biểu thức, tìm x, tính nhanh giá trị của biểu thức… mà muốn giải được học sinh cần phải phân tích đa thức thành nhân tử.
Bài 55: (Trang 25/SGK Toán 8 tập 1) Tìm x, biết

Bài 56: (Trang 25/SGK Toán 8 tập 1) Tính nhanh giá trị của đa thức:
 tại x = 49,75
 tại x = 93, y = 6
 Bài 56: (Trang 14/SBT Toán 8 tập 1) Rút gọn biểu thức:
a) (6x + 1)2 + (6x – 1)2 – 2(1 + 6x)(6x – 1)
b) 3(22 + 1)(24 + 1)(28 + 1)(216 + 1)
Những bài Toán được liệt kê phía trên là những ứng dụng điển hình quan trọng từ những hằng đẳng thức đáng nhớ và phân tích đa thức thành nhân tử. Vì vậy giáo viên cần hướng học sinh nắm chắc phần này để làm tiền đề giải những dạng Toán liên quan sau này.

II. Thực trạng vấn đề

Sau khi các em học xong dạng Toán phân tích đa thức thành nhân tử, mỗi em cần hiểu rõ dạng Toán này đóng vai trò hết sức quan trọng trong việc giải quyết các bài Toán liên quan như: rút gọn biểu thức, tìm x, tính nhanh giá trị của biểu thức, giải phương trình, chứng minh chia hết, tìm giá trị lớn nhất (hoặc nhỏ nhất) … Vì vậy việc nắm vững các dạng phân tích đa thức thành nhân tử là rất cần thiết.
Tuy nhiên trong quá trình giải toán dạng phân tích đa thức thành nhân tử thì đa số các em vận dụng chưa tốt, đặc biệt có nhiều em chưa nắm chắc lý thuyết, hoặc chỉ nhận dạng được các công thức này ở những dạng đơn giản, còn khi các công thức ở dạng phức tạp hơn thì các em trở nên bị động và không biết giải quyết như thế nào.
Một số học sinh khả năng nhận dạng bài Toán khá nhanh, tuy nhiên chưa biết cách vận dụng linh hoạt phương pháp vào giải Toán, hoặc trường hợp các em đã biết vận dụng nhưng trong khi thực hiện phép tính còn xảy ra sai sót về dấu hoặc nhầm lẫn dấu sau khi bỏ ngoặc đằng trước có dấu trừ…
Cụ thể, năm học 2016 – 2017, bài kiểm tra viết chương I: câu phân tích đa thức thành nhân tử, số HS khối 8 trường Trung học cơ sở ABC có 110 em, cho kết quả:
  Phân tích đúng Phân tích sai Không biết phân tích
Số HS 40 40 30
Tỉ lệ % 36,4% 36,4% 27,2%

Từ những thực trạng nêu trên, tôi đã nghiên cứu tìm ra một số phương pháp sao cho có hiệu quả, nâng cao chất lượng học sinh trong việc vận dụng phân tích đa thức thành nhân tử vào giải Toán.

III. Các giải pháp đã tiến hành để giải quyết vấn đề:  

Để áp dụng tốt giải toán phân tích đa thức thành nhân tử vào những bài toán liên quan thì trước hết học sinh cần phải:
+ Học thuộc lòng các hằng đẳng thức đáng nhớ đồng thời cụ thể hóa bằng công thức.
+ Nắm vững và biết áp dụng các cách phân tích đa thức thành nhân tử.
+ Sử dụng chính xác cách phân tích đa thức thành nhân tử mà nội dung từng bài Toán yêu cầu.
+ Kết hợp với các kĩ năng biến đổi, thu gọn biểu thức.
1. Kiến thức cơ bản:
* Học sinh cần học thuộc những hằng đẳng thức đáng nhớ:







* Học sinh cần học thuộc các cách phân tích đa thức thành nhân tử:
+ Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
+ Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
+ Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
+ Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp.
2. Các bài tập
Trước tiên ta phải nhấn mạnh cho học sinh hiểu rõ: Phân tích đa thức thành nhân tử là biến đổi đa thức đó thành một tích của những đa thức.
2.1. Dạng 1: Bài tập đơn giản ở mức độ nhận biết.
2.1.1. Phương pháp:
- Xét xem biểu thức đã cho có dạng hằng đẳng thức nào.
- Xác định biểu thức A, B
- Thay các biểu thức A, B vào hằng đẳng thức vừa xác định.
2.1.2. Bài tập:
Bài 1: Phân tích các đa thức sau thành nhân tử
a)
b)
c)
d)
e)
g)
h)
Giải:
Đây là những dạng bài tập nhận biết cơ bản, yêu cầu học sinh nhận dạng được hằng đẳng thức, sau đó cho các em xác định biểu thức A, biểu thức B trong từng câu rồi áp dụng công thức để phân tích:
a)
b)
c)
d)
e)
g)
h)
- Với những học sinh yếu kém, việc giải Toán dù là những bài đơn giản cũng trở nên rất khó khăn. Giáo viên cần phải cho học sinh tự nhận biết đó là dạng hằng đẳng thức nào rồi giúp các em phân tích kĩ càng hơn để đưa ra kết quả. Đặc biệt khi bắt đầu đưa ra một bài Toán cần yêu cầu học sinh xác định hạng tử A, hạng tử B trước khi làm bài để tránh được sự nhầm lẫn từ ban đầu. Đối với ví dụ g và ví dụ h, định hướng để học sinh tự phát hiện và làm xuất hiện hằng đẳng thức.
Bài 2: Phân tích các đa thức sau thành nhân tử
a)
b)
c)
d)
Giải:
a) Đối với bài toán này giáo viên hỏi học sinh, ta có thể đưa về dạng hằng đẳng thức nào. Học sinh sẽ phát hiện ra hằng đẳng thức số 3. Để đưa về dạng
A2 - B2 = (A-B)(A+B) thì ta cần gì, sử dụng công cụ gì? Học sinh tự phát hiện đưa về dạng lũy thừa . Vậy trong bài toán này ta đưa ra được như thế nào, học sinh đưa ra x6 = (x3)2, y6 = (y3)2, đến đây học sinh tự giải quyết các bài toán.
b) và c) Với câu b, c là bài tập bắt đầu yêu cầu học sinh nâng cao tư duy, học sinh khá giỏi sẽ giải bài này không khó khăn nhưng những học sinh yếu kém sẽ thường nhầm lẫn như sau:
 (Cách làm sai của HS)
Học sinh cần phải nắm rõ với các biểu thức A, B trong hằng đẳng thức là một biểu thức gồm cả số và biến hoặc gồm hai biến thì phải sử dụng dấu ngoặc và lũy thừa của cả biểu thức đó.
 Ví dụ:

Trong đó
Hoặc
Trong đó
Vì vậy bài Toán được giải đúng như sau:

Giáo viên luôn luôn nhấn mạnh với học sinh là cần xác định chính xác biểu thức A, B trước khi làm bài để tránh sai sót về sau.
d) Tương tự, sau khi học sinh đọc đề thì giáo viên định hướng và yêu cầu học sinh xác định đúng A =  và B = 2y, sau đó giáo viên cho học sinh phân tích cụ thể biểu thức A2, 2AB và B2 đúng rồi sau đó mới tiến hành giải.

2.2. Dạng 2: Dạng bài biến đổi, đặt nhân tử chung, nhóm hạng tử để làm xuất hiện hằng đẳng thức.
2.2.1. Phương pháp:
- Phát hiện nhân tử chung hoặc nhóm các hạng tử để xuất hiện hằng đẳng thức.
- Dựa vào hằng đẳng thức để đưa biểu thức về dạng nhân tử.

THÔNG TIN GÓP Ý
        Quý thầy cô hoặc bạn đọc muốn đóng góp tài liệu, vui lòng gửi về:
    Fanpage: https://www.facebook.com/linhhoitrithuc (Chia sẻ tài nguyên miễn phí)
    Email: linhhoitrithuc@gmail.com  

Những tin đã đăng

Thống kê truy cập
  • Đang truy cập8
  • Hôm nay553
  • Tháng hiện tại13,289
  • Tổng lượt truy cập203,606
GIÁO ÁN THEO CHỦ ĐỀ
ĐỀ THI HK 2 TIỂU HỌC
giáo án theo công văn 5512
facebook
Đăng nhập
Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây